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Abstract. We propose a new number-difference-phase coherent state analogue in two-mode Fock

space by introducing a new operator A = √
a†a − b†b + 1( a+b†

a†+b
)

1
2 . The coherent state analogue

is the eigenvector of A and possesses non-orthonormal and overcompleteness properties. It is
constructed on certain superposition states in the radius direction.

1. Introduction

It is well known [1] that the coherent state is the eigenvector of the photon annihilation operator
a, i.e. a|α〉 = α|α〉, where |α〉 = exp[− 1

2 |α|2 + αa†]|0〉 and possesses the over-completeness
relation

∫
d2α|α〉〈α| = 1. Dirac [2] was the first who decomposed a as a = √

neiφ , where
n is the number operator n = a†a and eiφ is the Dirac phase operator. Later, Susskind and
Glogower (SG) [3] improved it as

a =
√

n + 1eiφ. (1)

Equation (1) can be considered as the polar decomposition of a. However, the SG phase
operator is not unitary, which implies that there does not exist a proper phase operator
φ. To overcome this difficulty, in [4] using an eight-port homodyne detection scheme,
Noh, Fougeres and Mandel (NFM) proposed an operational quantum phase measurement
to introduce Hermitian phase operators. Later, Freyberger et al [5] pointed out that, in the
limit of a strong local oscillator, the simultaneous measurable NFM phase operator pair can
be defined. Meanwhile, Hradil [6] summarized NFM phase measurement and introduced a
two-mode nonlinear phase operator as

(
a + b†

a† + b

)1
2

= eiθ (2)

which is obviously unitary, noting [a+b†, a†+b] = 0, so they can reside in the same square root.
In this work we generalize (1) to the two-mode case by introducing the following operator:

A =
√

D + 1

(
a + b†

a† + b

)1
2

A† =
(

a† + b

a + b†

)1
2 √

D + 1 (3)
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where D ≡ a†a − b†b is the photon number difference between the two modes. (As one can
see later we need not worry about whether the argument in the square root of (3) is less than
zero.) By comparing equations (1) and (3) we see the correspondence

√
n + 1 → √

D + 1,
and eiφ → eiθ . Since eiθ is a nonlinear operator, the generalization form (1)–(3) is non-trivial.
Due to the relations

[D, a + b†] = −(a + b†) [D, a† + b] = −(a† + b) [D, (a + b†)(a† + b)] = 0 (4)

which indicate that

[D, eiθ ] = −eiθ [D, e−iθ ] = e−iθ (5)

we have the familiar commutation relation

[A, A†] = 1. (6)

The aim of this work is to search for the eigenvector |β〉 of the operator A

A|β〉 = β|β〉 β = |β|eiϕ (7)

which we call the ‘number-difference-phase coherent state analogue’ in two-mode Fock space.
In section 2, based on the result of [7] we construct |β〉. Then in section 3 we discuss its
properties, especially its over-completeness relation.

2. The construction of |β〉

Recall that in [7] Fan and Zou have set up a new quantum mechanical representation denoted
by |q, r〉, which is the common eigenvector of D and ( a + b†)(a† + b), satisfying

D|q, r〉 = q|q, r〉 (a + b†)(a† + b)|q, r〉 = r2|q, r〉 (8)

where q is an integer. The explicit expression of |q, r〉 in two-mode Fock space has also been
derived:

|q, r〉 = exp

[
−1

2
r2 − a†b†

] ∞∑
n=max(0,−q)

r2n+q

√
n!(n + q)!

|n + q, n〉 (9)

|q, r〉 is proved to be complete:
∞∑

q=−∞

∫ ∞

0
dr2|q, r〉〈q, r| = 1 (10)

and orthonormal:

〈q ′, r ′|q, r〉 = 1

2r ′ δq,q ′δ(r ′ − r). (11)

It is also shown in [7] that the lowering and ascending properties of eiθ and e−iθ acting on |q, r〉
are satisfied:

eiθ |q, r〉 = |q − 1, r〉 eiθ |q, r〉 = |q + 1, r〉. (12)

Using the completeness relation of |q, r〉 in equation (10) the state |β〉 can be expanded as

|β〉 =
∞∑

q=−∞

∫ ∞

0
dr2 Cq,r |q, r〉 (13)

where Cq,r = 〈q, r|β〉. Obviously,

A|q, r〉 = √
q|q − 1, r〉 (14)
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which resembles the single-mode case a|n〉 = √
n|n − 1〉, where |n〉 = a†n√

n!
|0〉 is the number

state. However,
√

q could be a pure imaginary number as q can take negative integer values, and
there is no lower bound for |q, r〉. Substituting equation (14) into the eigenvector equation (7)
we have

A|β〉 =
∞∑

q=−∞

∫ ∞

0
dr2 Cq,r |q − 1, r〉√q = β

∞∑
q=−∞

∫ ∞

0
dr2 Cq,r |q, r〉. (15)

Employing the orthonormal property of |q, r〉 yields the recurrence relation of Cq,r , i.e.,
√

qCq,r = βCq−1,r (16)

which implies that Cq,r can be decomposed as

Cq,r = Cqf (r). (17)

Here f (r) is a function of r (which will be determined briefly later) whereas Cq is not. In
particular, βC−1,r | − 1, r〉 = 0. Therefore, combining equations (16) and (17) gives the
expression for Cq :

Cq =



βq

√
q!

C0 for q � 0

0 for q < 0
(18)

where C0 is a normalization constant. So we get from equations (17) and (18) that

Cq,r =



βq

√
q!

f (r) for q � 0

0 for q < 0
(19)

where we have absorbed C0 into f (r). Equation (19), together with (13), gives the expression
of |β〉 in the |q, r〉 basis,

|β〉 =
∞∑

q=0

∫ ∞

0
dr2 βq

√
q!

f (r)|q, r〉. (20)

Then only those states |q, r〉 with q � 0 contribute to |β〉, which is why we need not worry
about the argument in the square root of (3) being negative. Now recall that A†|q, r〉 =
e−iθ

√
D + 1|q, r〉 = √

q + 1|q + 1, r〉, which implies that, for q � 0, the following expression
is valid:

|q, r〉 = A†q

√
q!

|0, r〉. (21)

This equation looks like the well known relation a†|n〉 = √
n + 1|n + 1〉. From equations (20)

and (21) we obtain

|β〉 =
∞∑

q=0

∫ ∞

0
dr2 βq

√
q!

f (r)
A†q

√
q!

|0, r〉 = eβA†
∫ ∞

0
dr2 f (r)|0, r〉. (22)

To determine the normalization constant for |β〉 with respect to β we calculate

〈β|β〉 =
∫ ∞

0

∫ ∞

0
dr2 dr ′2〈0, r ′|eβ∗AeβA† |0, r〉f (r)f (r ′)

= e|β|2
∫ ∞

0

∫ ∞

0
dr2 dr ′2 1

2r ′ δ(r
′ − r)f (r)f (r ′)

= e|β|2
∫ ∞

0
dr2 f 2(r). (23)
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Here A|0, r〉 = 0, as well as the Baker–Hausdoff formula eβ∗AeβA† = e|β|2 eβA†
eβ∗A, is used.

Therefore, if we impose the condition for f (r) which should satisfy∫ ∞

0
dr2 f 2(r) = 1 (24)

for instance, f (r) can be e− 1
2 r2

, then the normalized eigenstate |β〉 is

|β〉 = e− |β|2
2 +βA†

∫ ∞

0
dr2 f (r)|0, r〉. (25)

Thus we see that |β〉 is based on a superposition of the states |0, r〉 on the radius direction,
provided that f (r) satisfies equation (24). It must be emphasized that |β〉 is different from the
usual two-mode coherent state, as is obvious.

3. The properties of |β〉

Further, let ∫ ∞

0
dr2 f (r)|0, r〉 = |0〉〉 (26)

then it is obviously seen that 〈〈0 | 0〉〉 = 1, A|0〉〉 = 0 and

|β〉 = e− |β|2
2 +βA† |0〉〉 (27)

from which then follows the non-orthogonal overlap:

〈β ′|β〉 = exp

[
−|β|2 + |β ′|2

2
+ β ′∗β

]
(28)

which is a distinguished property of the coherent state. Now, defining the un-normalized state
‖β〉 = eβA† |0〉〉, from equation (28) we have 〈β ′‖β〉 = eβ ′∗β . Therefore:

〈β ′‖∂/∂β〉〈β∗‖|β=0‖β ′′〉 = eβ ′∗ ∂
∂β eββ ′′ |β=0 = eβ ′∗β ′′

. (29)

Since β ′ and β ′′ are arbitrarily taken, equation (29) means

‖∂/∂β〉〈β∗‖|β=0 = 1. (30)

It then follows that

‖∂/∂β〉〈β∗‖|β=0 = e
∂
∂β

A† |0〉〉〈〈0|eβ∗A|β=0 = 1. (31)

Now we introduce the normal product concept for A and A†, denoted as ◦
◦

◦
◦ , and assume the

normally ordered form of |0〉〉〈〈0| to be ◦
◦W

◦
◦ , where W is to be determined. Then equation (31)

becomes

‖∂/∂β〉〈β∗‖β=0 = e
∂
∂β

A† ◦
◦W

◦
◦eβ∗A|β=0 = ◦

◦e
∂
∂β

A†

Weβ∗A ◦
◦ |β=0

= ◦
◦eA†AW

◦
◦ = 1. (32)

Notice that the operators A and A† are permuted within the normal ordering symbol ◦
◦

◦
◦ [8],

so

|0〉〉〈〈0| = ◦
◦W

◦
◦ = ◦

◦e−A†A ◦
◦ . (33)
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Therefore we can show that∫
d2β

π
|β〉〈β| =

∫ |β|d|β|
π

e−|β|2
∫

dϕ exp[A†|β|eiϕ]|0〉〉〈〈0| exp[A|β|e−iϕ]

=
∞∑

n=0

A†n

√
n!

|0〉〉〈〈0| An

√
n!

=
∞∑

n=0

A†n

√
n!

◦
◦e−A†A ◦

◦
An

√
n!

= ◦
◦eA†A−A†A ◦

◦ = 1 (34)

which indicates the over-completeness relation of |β〉. If we use the technique of integration
within an ordered product ◦

◦
◦
◦ of operators [8] we can simplify (34) to

∫
d2β

π
|β〉〈β| =

∫
d2β

π

◦
◦e−|β|2+βA†+β∗A−AA ◦

◦ = 1. (35)

4. |β〉 as a minimum uncertainty state

As the usual coherent state makes the coordinate-momentum uncertainty relation a minimum,
we explore the corresponding property for |β〉. We introduce the Hermitian operators (new
quadratures)

X = 1√
2
(A + A†) P = 1

i
√

2
(A − A†) (36)

whose commutation relation is [X, P ] = i, which implies the uncertainty relation�X�P � 1
2 .

In |β〉 we have the following expectations:

〈β|X|β〉 = 1√
2
(β + β∗) 〈β|P |β〉 = 1

i
√

2
(β − β∗)

〈β|X2|β〉 = 1
2 (β2 + β∗2 + 2|β|2 + 1)

〈β|P 2|β〉 = − 1
2 (β2 + β∗2 − 2|β|2 − 1)

(37)

so that

(�X)2 = 〈β|X2|β〉 − 〈β|X|β〉2 = 1
2 = (�P )2 (38)

which implies that, for |β〉, we can state

�X�P = 1
2 . (39)

Thus |β〉 makes the uncertainty relation minimum.
From the eight-port homodyne experiment we know both the operational phase cos θ =

1
2 (eiθ + e−iθ ) and the two-mode photon number difference D can be measured, as they are both
observables. So the operators A and A† can be indirectly known. Thus the introduction of
operators A and A† is natural, and they may have a physical meaning in their own right once
the experimentalists can figure out how to measure them directly.
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